Bilkent University

Department of Computer Engineering

Senior Design Project

Machine Learning for Machining Processes of
Three-Dimensional Parts

Project Low Level Design Report

Project Members: Irmak Akyeli, Denizhan Kemerdz, Alp Uneri, Bulut Goziibiiyiik, Tuva
Tanay Isiksal

Supervisor: Prof. Dr. Ugur Giidiikbay

Jury Members and Project Evaluators: Dr. Shervin Arashloo and Dr. Hamdi Dibeklioglu.

Feb 26, 2022

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment
of the requirements of the Senior Design Project course CS491/2.

Contents

1. Introduction

1.1 Object Design Trade-Offs

1.2 Interface Documentation Guidelines

1.3 Engineering Standards

1.4 Definitions, Acronyms and Abbreviations
1.4.1 Artificial Intelligence (AI)
1.4.2 Machine Learning (ML)
1.4.3 Machining Process Identification (MPI)

1.4.4 Convolutional Neural Networks (CNN)
2. Packages, Classes & Libraries

3. Machine Learning Model
4. Validation and Testing

5. References

10

10

12

14

17

1. Introduction

The project will be an application of machine learning (ML) techniques in the field of
machining process identification (MPI). ML is defined as a branch of artificial intelligence
(AI) and computer science that focuses on the use of data sets and algorithms to mimic the
way humans are able to learn on computer systems [1]. ML algorithms, often called models,
are fed data from data sets that gradually get better and better in their accuracy in the same
ways that humans would [1]. For example, an ML model may be constructed to identify how
many faces are in a picture that is supplied. In order to do this, the model would have to be
trained using a known data set, which involves feeding the model data on which the aspect in
question is known, and the model would then gradually get better and better at identifying
how many faces there are in a supplied picture. After sufficient training, the model would be
able to identify the number of faces within a picture with great confidence.

MPI using ML is a novel area of research that aims to automate the manufacturing of
mechanical parts by automatically deciding whether the part in question would be able to be
manufactured using the manufacturing plants in place in an effort to make the manufacturing
process more time and cost-effective and to reduce the number of faults that may occur
during manufacturing [2]. Our project will investigate the applicability of ML and especially
convolutional neural networks (CNNs) for MPI means. A CNN is a deep learning model that
takes in an input image and by assigning importance such as learnable weights and biases to
various aspects or objects within the image is able to differentiate images within a number of
categories the aspects/objects within the image can belong to [3].

We will be trying to come up with an ML model that will be used to automate the
processes of determining the type of manufacturing processes (additive versus subtractive

manufacturing) to be used, the producibility of three-dimensional models, and cost

estimation. Additive manufacturing is when processes build objects by adding materials layer
by layer to form the desired product, while subtractive manufacturing is when materials are
removed from an already existing object to come up with the part that is needed [4]. We are
planning on developing a deep learning framework for determining which type of machining
processes are suitable for producing a machine part and the producibility of these parts using
the selected machining process for the provided three-dimensional models.

The machining operations we will consider are turning, milling, and drilling. Turning
is a machining operation in which a workpiece is rotated while the cutting piece moves in a
linear motion to achieve the desired shape, which is often cylindrical [5]. A lathe machine is
usually used for turning purposes [5]. Drilling is a machining operation in which a drill press
or a tapping machine is used to create a round hole in a workpiece [5]. Lastly, milling is a
machining operation that involves using many multi-point rotary cutters to remove material
from an object to achieve the desired outcome [5]. Our end product will also be able to
determine which operations are to be performed in order to attain the desired part if the part is
able to be produced using the available producing plant. Another stage for the parts that are
producible using the selected machining process and the operations selected is the estimation
of the cost of the production of the parts for different material properties and costs input to

the system.

1.1 Object Design Trade-Offs

The four main factors that we deliberated on are algorithmic efficiency, memory cost,
the accuracy of the model, and the time required to predict the attributes for the parts. The
first two are common to all software engineering solutions, and we have decided that we
would be in favor of algorithmic efficiency as opposed to lowering memory cost, and would

make trade-offs in order to speed up our processes even when it means more memory would

be required. We have chosen to do so because our training of the model takes quite a bit of
time with a large number of epochs and a sizable amount of time per each epoch. Therefore,
we have chosen to try and speed this process up as much as we can even though it might
mean we would have to utilize more memory to do so. One can argue that because we only
need to train the model once before providing it to the user we would not necessarily have to
worry about the time it would take to complete the training of the model. However, as during
testing we might change qualities about the model in an effort to increase its accuracy, and
would have to train it every single time, we have chosen to favor algorithmic efficiency as
opposed to a lowered memory cost. One may also argue that since the training has to only be
done once the memory cost will only have to be paid once, so it is not a big problem to favor
algorithmic efficiency.

The other two factors we considered are the accuracy of the model when predicting a
part, and the time it takes for the model to predict a part. We would ideally like the accuracy
of the model to be as high as possible, and the time it takes to predict a model to be as low as
possible. We have decided that the accuracy threshold for our model in order to be considered
a success 1s 95%, and we have decided that it can take up to a minute’s time for the model to

predict a part that is given, depending on the size of the part.

1.2 Interface Documentation Guidelines

Pl lect a STL fil
Select 5H Model Fase seiecta =

=
m
o
m
=]
=

Results:

Figure - 1
Upon launching our program, the user will be met with the above screen. From this
screen, only the Select STL Model button will be available. Using this button, the user will be

able to select the STL model of the part that they are wanting to predict.

coct st ogel | Ple3seselectasTL fle

/
4\ > ThisPC > Desktop > CS492 > stl v G Search st
Organize * New folder = o @
stl Name Type Size
~ [This PC da) Madde_1 o 970
> illl Desktop da) Madde_2 3D Objec 31
> [Documents
&) Madde 3 3D Objec
> & Downloads
> @ Music da) Madde_4 Object
> I Pictures da] Madde 5
Reslts: -
> [Videos
I: da) Madde_6 300 1
> i Windows-SSD (¢
> == Data (D)
File name: v
Open Cancel

NG 2002
DD o

~ O g

Figure - 2
Once they click the Select STL Model button, the user will be met with the above
standard file selecting screen. From this screen they will be able to navigate their files and

select the desired STL model.

[CEl
coectstagel | CHUSErlABn/OneDrive Deskiop/CS482/s Madde st

Convert to Binvox

A @ ?R'g (=08 O

20:03
26-Feb-22

Figure - 3

After the user selects the STL model that they wish to predict, the model will be
visible in the model viewer part of the screen. Here the STL model will be shown in 3-D and
the user will be able to rotate or zoom in/out of the model as they wish. Also, the Convert to

BinVox button will be available once the user has selected an STL model.

[MPI CS491/2 - o X
s C:[Users/alpun/OneDrive Desktop/CS492/st/Madde _1.st
Convert toBivox

Predct model

P IINTIZEZO® 848 EE

Results:

Figure - 4

After clicking the Convert to BinVox button, the supplied STL model will be
converted into BinVox format and will then be displayed under the STL model. The user will
likewise be able to rotate and zoom in/out to this model as well. After the user has converted

the STL model into BinVox, the Predict Model button will become enabled as well.

[M1 cs491/2 . i }
Select St Model C: [Users/alpun/OneDrive Desktop/CS492/st/Madde _1.st
[cometwsmex |

Predict madel

Y ERIYIZZ® E4E @O

The Machinabity: not machinable

Figure - 5

Once the user clicks the Predict Model button, the model will be predicted and the
results will be shown on the lower left hand corner of the screen. For this particular model the
prediction results are that it is not machinable, so the machining operations are not shown. If
the model is predicted to be machinable, the appropriate machining operations will also be

shown as in the following screen.

9 wpi csa91/2 - o x
Selct St
prr—

Predetmodel

P EIRVIZEZ® B 48 B

The Machinabity: machinable:

The procedure: Miling Turing

ENG
gl

D @

As in the above screen, if the given model is predicted to be machinable, the

machining operations will be shown in the lower left hand corner of the screen as well.

1.3 Engineering Standards

We have chosen to use the Unified Modeling Language (UML) when preparing
diagrams for our system, and we have made a use-case diagram, object and class diagram,
state machine diagram, sequence diagram, and activity diagram for our system. These

diagrams can be found in our High Level Design Report.

1.4 Definitions, Acronyms and Abbreviations

In this section of the report we will be providing the definitions of acronyms and

abbreviations that we will be using throughout the report.

1.4.1 Artificial Intelligence (AI)

Artificial Intelligence is a branch of computer science that is concerned with building

smart machines capable of performing tasks that typically require human intelligence.

1.4.2 Machine Learning (ML)

Machine learning is defined as a branch of Al and computer science that focuses on
the use of data sets and algorithms to mimic the way humans are able to learn on computer

systems [1].

1.4.3 Machining Process Identification (MPI)

Machining process identification is the operation of deciding whether the part in

question would be able to be manufactured using the manufacturing plants in place.

Augmenting MPI with ML is a novel area of research performed in an effort to make the
manufacturing process more time and cost-effective and to reduce the number of faults that

may occur during manufacturing [2].

1.4.4 Convolutional Neural Networks (CNN)

A CNN is a deep learning model that takes in an input image and by assigning
importance such as learnable weights and biases to various aspects or objects within the
image is able to differentiate images within a number of categories the aspects/objects within
the image can belong to [3]. There are different dimensional CNNs, such as two dimensional
and three dimensional CNNs. We will be using a three dimensional CNN throughout our

project.

2. Packages, Classes & Libraries

As we have explained before, our project is not an object oriented project. Therefore we do
not use components like interfaces and abstract classes. Instead, we have a main class, a prediction
class and a training class. From the nature of our project, the main class accesses the predict class
when the user clicks the predict button. The training class is not linked to any other classes and is not
accessed by them. Its sole purpose is to create trained CNN models that we will provide to the
customer and the class itself will not be provided in the source code. Having only 3 classes the
implementation packages were not necessary.

In our project however, we have a 3D CNN model training system that uses many different
libraries provided by Python that should be mentioned to understand the training process. A brief
summary of the libraries used and their descriptions are as follows:

e Numpy: Numpy is a powerful python library that enables the user to work and

operate on multidimensional arrays. In our project numpy is used to store binvox files

10

transformed to multidimensional arrays and is the input type of our CNN training
models.

Tensorflow: Tensorflow is an open-source python library for ML and Al It is an easy
to use tool that lets the user create many different ML models such as deep-learning
models like CNN. Keras is also a specialized version of tensorflow that focuses on
deep-learning.

Keras: Keras is an interface implementation for tensorflow that simplifies the use of
the library in order to achieve better results and understanding. In our project the
implementation of our CNN models are made with tensorflow, keras. From Keras we
are using layers: Input, MaxPooling3D, MaxPooling2D, Dense, Flatten,
BatchNormalization, Dropout and Conv3D. As well as its optimizers and
regularizers.

Pandas: Pandas is a python library created for data manipulation and analysis. In our
project pandas is used to create training and validation partitions of our data.
Binvox_rw: Is an open source code made for python that enables the user to work on
binvox files and manipulate them to create different variable types. In our project as
the name suggests binvox rw is used to manipulate our binvox files and turn them to

numpy arrays.

11

3. Machine Learning Model

Like mentioned in the previous reports about our project, our aim is to improve the accuracy
of our source code, add aspects missing in it and turn it to a working MPI system. To do this we need
to analyze and understand the training model provided. We currently have three 3D CNN networks for
three different tasks. The first one takes 21 different feature used in machining and categorize them
under turning, milling and non-machinable features, the second one takes a machinable data input and
predicts its machining procedure that can be milling, turning or both of them and finally the third
model takes a data input and decides if it is machinable or not. The first CNN network, as you can see
in Figure 7, operates on 200 distinct part models that are each taken from 6 different orientations for
each feature. This makes a total of 20.000 models that are used in the creation of the CNN network.
70% of this data is used in the training, 15% of it in the validation and the remaining 15% is used in
the testing. The CNN model is created using keras’s sequential model, a model used for layering with
single input and output of each layer, and has 10 layers. As the results of the other two models are
dependent on the features provided, this CNN network is the most detailed one and is trained on
20,000 epochs. The Second and third CNN network, as you can see in Figure 8, is initialized with the
weights loaded from the first network (the weights obtained after the training on 20,000 epochs) so
that they are not required to train from the beginning. The second CNN network is fed 500 milling,
500 turning and 500 milling-turning models again all taken from 6 orientations. With the weights
already loaded from the first network, only fine tuning is performed during the training and 500
epochs is used to achieve this. The last network takes the input data of the second network as
machinable models and takes another 2400 models as non-machinable models. Again similar to the
second network the weights are loaded from the first network and only 500 epochs are used to train

the network. All the three networks show over 95% accuracy on the training.

12

conv3d_3_input | input:

InputLayer output:

[(None, 64, 64, 64, 1)]

[(None, 64, 64, 64, 1)]

conv3d_3
Conv3D

input:

(None, 64, 64, 64, 1)
output:

(None, 29, 29, 29, 32)

conv3d 4
Conv3D

input:

(None, 29, 29, 29, 32)
output:

(None, 29, 29, 29, 32)

conv3d 5
Conv3D

input:

(None, 29, 29, 29, 32)

output:

(None, 29, 29, 29, 64)

max_pooling3d_1 | input:

MaxPooling3D | output:

(None, 29, 29, 29, 64)

(None, 15, 15, 15, 64)

flatten_1 | input:

output:

Flatten

(None, 15, 15, 15, 64)

(None, 216000)

dropout_2 | input:

(None, 216000)

Dropout | output:

(None, 216000)

dense_3 | input:

(None, 216000)

Dense | output:

(None, 128)

dropout_3 | input:

output:

(None, 128)

Dropout

(None, 128)

dense_4 | input:

—_
=

one, 128)

Dense | output:

(None, 16)

dense 5 | input:

(None, 16)
Dense

output:

(None, 21)

Figure - 7

conv3d_15 input | input:
[(None, 64, 64, 64, 1)] | [(None, 64, 64, 64, 1)]
InputLayer output:
L
conv3d_15 | input:
(None, 64, 64, 64, 1) | (None, 29, 29, 29, 32)
Conv3D | output:
conv3d_16 | input:
(None, 29, 29, 29, 32) | (None, 29, 29, 29, 32)
Conv3D | output:
conv3d_L7 | input:
(None, 29,29, 29, 32) | (None, 29, 29, 29, 64)
Conv3D | output:
\
conv3d_18 | input:
(None, 29,29, 29, 64) | (None, 29, 29, 29, 64)
Conv3D | output:
max_pooling3d_6 | input:
- (None, 29, 29, 29, 64) | (None, 15, 15, 15, 64)
MaxPooling3D | output:
flatten_6 | input:
(None, 15, 15, 15, 64) | (None, 216000)
Flatten | output:
\
dense_18 | input:
(None, 216000) | (None, 128)
Dense | output:
dense 19 | input:
(None, 128) | (None, 16)
Dense | output:
dense 20 | input:
(None, 16) | (None, 2)
Dense | output:
Figure - 8

13

4. Validation and Testing

However, contrary to the accuricies shown during the training outputs, when the model is
tested on the real parts, concerning results are obtained and we are currently trying to improve them.
The network shows a tendency to predict milling-turning for the machining parts that should be only
turning and almost never predicts turning alone. Likewise, while looking at the machinability three
out of 8 models returns wrong predictions and when the same binvox file is used to predict multiple
times, the result also varies. All these makes the networks unreliable and in need of improvement.
There are several possible reasons as of why the user receives these predictions:

o The data used in the training may not be enough for small enough details or accurate
predictions.

e The resolution of binvox files that is currently 64x64x64 for competitive purposes is
not enough for distinction of different shapes that we are trying to recognize as
features, and tempers with the smooth corners too much to make them inseparable

from sharp corners. Differences can be seen in figure 7 and 8.

Figure - 9 (3D Stl Model) Figure - 10 (Voxel Format)

e The different numbers of features and models makes the CNN network biased
towards a certain procedure. (There are 9 milling features compared to 7 turning

features that can make the machine side with milling with unsure predictions)

14

e The training epochs choice and different trainings affect the output too much.

e The saving and preservation of the CNN model somewhat affects its prediction and
results.

In our project we are currently seeking different approaches to improve the results of the predictions
before adding new features to our system. Our current trials to improve the results include:

e Feature extraction, to make the number of features equal or block a particular feature
that can affect the predictions in a negative way.

e Data extraction to make the number of models of machinable and nonmachinable
equal to see if it makes the network biased.

e Use SHAP (SHapley Additive exPlanations) that is a game theoretic approach to
explain the outputs of the machine learning systems, to see the weights assigned to
different features and their effects on the predictions.

e Create a side project that takes binvox files and improves their details by increasing
their resolutions and smoothing the round corners.

e Trials to train the networks with different epochs and parameters, to be able to
compare them.

The results of these trials will determine the next steps we will be taking during our project.

15

ground truth 1.000 epochs 2.000 epochs 5.000 epochs 20.000 epochs Data processed

Model # is machinable? procidure is machinable? procidure is machinable? procidure is machinable? procidure is machinable? procidure is machinable? procidure

3 yes milling no milling no milling no milling no milling no milling-turning
19 yes tumning no milling-turning yes milling-turning yes milling-turning yes milling-turning no turning
21 yes tumning no turning no milling-turning no milling-turning no turning no milling-turning
30 yes turning no milling-turning no milling-turning no turning no milling-turning | no turning
43 yes milling yes milling no milling-turning yes milling-tuming yes milling no milling-turning
46 yes turning no milling no milling no milling yes miling no milling
49 yes milling yes milling-turning no milling no milling yes milling-turning no milling-turning
51 yes milling no milling no milling no milling yes milling no milling

2/8 4/8 1/8 1/8 2/8 4/8 5/8 4/8 0/8 38

Figure - 11 (Pink tone is wrong outputs and orange one is discussable)

16

5. References

[1] “What is machine learning?”. https://www.ibm.com/cloud/learn/machine-learning.

[Accessed: Oct 9, 2021]

[2] S. G. Joung, V. Aggarwal, J. W. Sutherland, and M. B.-G. Jun, “Identifying
manufacturability and machining processes using deep 3D convolutional networks,” Journal
of Manufacturing Processes, vol. 64, pp. 1336-1348, 2021. M. Szilv$i-Nagy and G. Matyasi,
[3] ”A Comprehensive Guide to Convolutional Neural Networks”.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the

-eliS-way-3bd2b1164a53. [Accessed: Oct 9, 2021]

[4] “Additive vs. Subtractive Manufacturing”.

https://formlabs.com/blog/additive-manufacturing-vs-subtractive-manufacturing/. [Accessed:

Oct 9, 2021]

[5] “Machining Processes: Turning, Milling, and Drilling”.

https://trimantec.com/blogs/t/machining-processes-overview. [Accessed: Oct 9, 2021]

17

https://www.ibm.com/cloud/learn/machine-learning
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://formlabs.com/blog/additive-manufacturing-vs-subtractive-manufacturing/
https://trimantec.com/blogs/t/machining-processes-overview

18

